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Abstract. A novel method of map matching using the Global Positioning System
(GPS) has been developed which uses digital mapping and height data to augment
point position computation. This method reduces the error in position, which is
a sum from several sources, including signal delay due to the ionosphere and
atmosphere and until recently from ‘selective availability’ (S/A). S/A was imposed
by the US military to degrade purposefully the accuracy of GPS, but was switched
oŒon 2 May 2000, and is to be replaced with ‘regional denial capabilities in lieu
of global degradation’ (Interagency GPS Executive Board, 2000). Taylor et al.
(2001) describe the Road Reduction Filter (RRF) in detail. RRF is a method of
detecting the correct road on which a vehicle is travelling. In the work described
here, the position error vector is estimated in a formal least squares procedure,
as the vehicle is moving. This estimate is a map-matched correction, that provides
an autonomous alternative to DGPS for in-car navigation and � eet management.
In this paper, a formula is derived for ‘Mapped Dilution of Precision’ (MDOP),
de� ned as the theoretical ratio of position precision using map-matched correc-
tions to that using perfect DiŒerential GPS (DGPS) correction. This is shown to
be purely a function of route geometry, and is computed for examples of basic
road shapes. MDOP is favourable unless the route has less than a few degrees
curvature for several kilometres. MDOP can thus provide an objective estimate
of positioning precision to a vehicle driver. Precision estimates using MDOP are
shown to agree well with ‘true’ positioning errors determined using high precision
(cm) GPS carrier phase techniques. The exact location of a vehicle on a road is
essential for accurate surveying applications. These include close range photo-
grammetry using digital video or still cameras and the veri� cation of digital
mapping by measured (GPS and other sensors) trajectories.

1. Introduction
The identi� cation of the particular road on which a vehicle is travelling may be

achieved in a number of ways using map matching and other techniques (Scott 1994,
Mallet et al. 1995, Collier 1990). A particular method developed in earlier work,
which is built upon here, solves this identi� cation problem using an algorithmic
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approach. This algorithm is called a Road Reduction Filter (RRF). This RRF
computes certain diŒerences (errors) between the trajectory drawn by raw uncorrected
GPS receiver positions taken in a moving vehicle and digital road centre-lines.
Potential roads are discarded when distance and bearing diŒerences reach certain
tolerances. This method will eventually reduce the set of all potential road centre-
lines down to just the correct one; within a few seconds in most cases (Taylor and
Blewett 2000). What is less certain with this method is the exact location of the
vehicle on that road centre-line. That is, the along-track error will vary considerably.
The steps of the RRF algorithm are brie� y described below:

1. A Raw vehicle position is computed using all satellites available plus height
aiding, where height is obtained from a DTM, and used to provide an extra
equation in the least squares approximation computation, i.e. computation is
possible with a minimum of three satellites. For the � rst epoch all roads (road
centre-line segments) , which are within 20 m distance (100 m with S/A on) of
the computed Raw position are selected. It is guaranteed with 95% con� dence
that the vehicle is on one of these road segments, according to GPS speci� ca-
tion (DoD/DoT 1992). The point on each of the n road segments that computes
the shortest distance to the Raw position is selected as the � rst approximation
of the true location of the vehicle, its Ref position. That is, there are n Ref
positions used to generate map-matched corrections for use with the next
epoch’s computed Raw position.

2. Map-matched corrections for each satellite pseudorange are computed at each
of the n Ref positions on each road segment for the current epoch, giving n
diŒerent sets of map-matched corrections.

3. The next epoch Raw position is computed, as in step 1.
4. Each of the map-matched corrections (step 2) are added to the Raw position

(step 3) to give n Cor positions for each n road segments.
5. Each of these n Cor positions is now snapped back onto the nearest road

centre-lines to give n Ref positions. Go to step 2. At each epoch for each of
the n road segments the distance travelled and bearing between epochs for
Raw positions are comparing with these values with equivalent Ref positions.
Any road segment where either of these diŒerences is greater than a set
tolerance is discarded.

Steps 2 to 5 are repeated continuously. The output point position from the RRF
is either taken from the only remaining road centre-line or is the weighted mean of
points on all candidate road centre-lines. RRF is fully described with test results in
Taylor et al. (2001 ).

2. Least squares estimation of position error vector
One problem with the approach brie� y described above is that errors in the GPS

signal translate into considerable errors in position. It may be possible at a particular
point in time correctly to identify the road a vehicle is travelling on, but the position
along the road may be in error by up to 20 m (100 m when S/A was switched on).
This ‘along-track error’ cannot be resolved for a straight road, but it can be resolved
if the road changes direction, or if the vehicle turns a corner. A more formal method
of computing a map-matched correction is now given, which is then integrated with
the Road Reduction Filter (RRF). This map-matched correction, or error vector, is
used to adjust the position of the vehicle on the road segment, but only when residual
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values are low, see equation (9) below. The advantage of formal methods is that
quality measures can be derived and used to place con� dence bounds for rigorous
decision making (for example, to reject road centre-lines that fail a particular hypo-
thesis test). Formal methods also provide insight into the relative importance of
factors, which can improve the procedure (e.g. data rates and road geometry) .

Figure 1 displays a GPS position at a single epoch. Vector b can be considered
to be the error vector (position error vector) from the true vehicle position on the
road centre-line at grid position Tru (ETru , NTru ) to the uncorrected position computed
from GPS at Raw(ERaw , NRaw ). The perpendicular distance from the Raw position
to the road centre-line at Int(EInt , NInt ) is given as L . The road centre-line for this
purpose is de� ned by extending the line segment, which joins previous Ref to current
Ref. The � rst approximation of the Tru position is the Ref position, which (as
explained in step 5 above) was obtained by snapping the Cor position (the Raw
position corrected using map-matched corrections) onto the closest point on the
road centre-line. Furthermore, the observed perpendicular distance from Raw
position to the road centre-line at Int is given by L where:

L 5 Ô Ó (ERaw Õ EInt )
2 1 (NRaw Õ NInt )

2 (1)

The positive root of L is taken if the raw point lies to the right of the centre-
line, and the negative root if it lies to the left. As L has a sign, it may be better
described as a ‘cross track coordinate’ rather than a distance.

Here, L is introduced as a ‘measurement’ which can be modelled geometrically.
The model that best � ts a series of these measurements provides an estimate of the
error vector, b . Consider the unit vector ê which points normal to the road centre-
line (and to the right of the road) at the Ref position: the cross track coordinate L

Figure 1. GPS position error vector.
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in equation (1) may also be modelled (computed) using the dot product of the two
vectors b and ê

b 5 b
E
E1 b

N
N

ê 5 r
N

EÕ r
E
N (2)

where E and N are unit vectors pointing in the East and North directions, and
r
E

and r
N

are the direction cosines of a road segment at the Ref position. The
Ref position is computed using the RRF algorithm. For analytical purposes later
(equations (16) (17) and (18)), it is convenient to write them in terms of w, the
bearing (clockwise azimuth from North) of the road segment.

r
E

5 sinw

r
N

5 cosw (3)

Therefore, an observation equation (4) may be formed, where the left side is
measured, and the right side is modelled, and includes an unknown term v, which
absorbs random position errors:

L 5 b · ê 1 v

5 b
E
r
N

Õ b
N

r
E
1 v (4)

Such an equation may be formed each time a GPS raw estimate of position is
computed. Now consider n successive GPS raw estimates over a time period where
the error vector b can be assumed to be approximately constant:

L 1 5 b
E
r
N1 Õ b

N
r
E1 1 v1

L 2 5 b
E
r
N2 Õ b

N
r
E2 1 v2

L 3 5 b
E
r
N3 Õ b

N
r
E3 1 v3

e

L
n
5 b

E
r
Nn

Õ b
N

r
En

1 v
n

(5)

In practice, b varies at a level comparable to a road width over 20 to 50 seconds,
dependent on the actual road and vehicle velocity. Hence, for GPS raw estimates
every second, n can have a value of about 30. This can be written in matrix form:

A
L 1
L 2
L 3
·

·

L
n

B 5 Ar
N1 Õ r

E1
r
N2 Õ r

E2
r
N3 Õ r

E3
e e

r
Nn

Õ r
En
BAb

E
b
N
B 1 A

v1
v2
v3
·

·

v
n

B (6)

This can be written compactly as,

L 5 Ax1 v (7)

The principles of least squares analysis is applied, a suitable description is given
by Blewitt (1997), which minimizes the sum of squares of estimated residuals, giving
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the following solution for (b
E
, b

N
):

x̂ 5 (ATA)Õ 1AT L (8)

Note that in equation (8 ) the co-factor matrix (AT A)Õ 1 , also sometimes called
the covariance matrix, is implicitly understood to be scaled by the variance of the
input observation errors. These errors in this case are characterized by the accuracy
of the particular digital road centre-line data used. The focus here is on the co-factor
matrix, which like A, is purely a function of direction cosines of road segments, i.e.
route geometry.

The estimated residuals (mis� t of model to the data) are given by:

v̂ 5 L Õ Ax̂ (9)

Equation (9) can be used to assess model � delity. After the least squares computa-
tion it is possible to estimate the precision of the measurements by examining the
residuals, i.e. how much the observed values have been altered by the process. If the
residual values are low then it is a high precision set of observations (Cross 1994).

Least squares assume that the errors v
i

are random with zero mean expected
value (i.e. some will be positive, some negative). It does not depend on the errors
being normally distributed. This is a reasonable model for GPS pseudorange meas-
urement error, but is not a good model for persistent systematic eŒects such as
atmospheric delay and errors in satellite positions computed from the Navigation
Message. However, such systematic eŒects will be absorbed by the error vector
estimate. Note that such persistent eŒects are not only a common mode for a single
receiver’s measurements over a short time period, but would also be in common to
all GPS stations in the local area. Clearly, the estimated error vector is equivalent
to a ‘position correction’ which could be provided by a local DGPS base station.
We call our technique ‘map-matched GPS’, it does not require data from another
GPS base station, but provides the same type of position correction.

Note that the GPS data and the digital map data have been incorporated into
this formal scheme through the ‘measurement’ of L . An advantage of taking such a
formal approach to map matching can therefore be seen as the quanti� cation of
expected errors, which can in turn be used to narrow down the search for possible
positions. For example, alternative hypotheses where a vehicle may have taken one
of three roads at a junction can be assessed in terms of the level of estimated
residuals, as compared to the level of expected errors.

The modelled error in the determination of the error vector can be found from
the covariance matrix, which can then be used to plot a con� dence ellipse within
which the true value of error bias can be expected to lie. The covariance matrix is
computed as:

C 5 s2 (ATA)Õ 1 (10)

The constant s2 represents the variance in raw GPS positions, excluding the
eŒects of common mode errors. In other words, s should equal the standard deviation
in raw GPS positions if perfect DGPS corrections were used to remove the eŒects
of non-random common model errors. Its value tends to be dominated by signal
multipath around the vehicle, and varies with the geometry of the satellite positions,
an eŒect known as ‘horizontal dilution of precision’ (HDOP). Typical values are at
the meter level. One possibility is to use the estimated residuals themselves to estimate
the level of s. However, this would be inadvisable because it is intended to use C to
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test the signi� cance of high levels of residuals, which would have created a circular
argument.

3. Quantifying road geometry: Mapping Dilution of Precision (MDOP)
Equation (10) given above for the computation of the covariance matrix leads

to an elegant method of quantifying road geometry as to its suitability for estimating
error in position on-the-� y.

First note that the least squares method assumes that the ‘co-factor matrix’
(ATA)Õ 1 exists. It is a necessary but not su� cient requirement that n > 2. If the two
Ref positions are collinear (the road is perfectly straight) , then a third position is
required that is not collinear. In the work here n 5 30. We now explore how the
co-factor matrix can be interpreted, and how it is related to the shape of the road.

The diagonal elements of the cofactor matrix can each be interpreted from
equation (10) as the ratio of the error squared in estimated error vector component
to the expected error squared of a single GPS position in the case that an ideal
DGPS position correction were used. To obtain a single number that relates to
standard deviation of position instead of variances and covariances, we follow the
example of classic GPS theory by which the square root of the trace of the cofactor
matrix is taken as a ‘Dilution of Precision’ (DOP) value. We therefore de� ne
‘Correction Dilution of Precision’ (CDOP) as:

CDOP 5 Ó Tr(ATA)Õ 1 (11)

From the de� nition of matrix A in equation (6), we can write CDOP in terms
of the direction cosines at each of the sampled points on the road. Starting with the
cofactor matrix:

(AT A)Õ 1 5 A �
n

r2
Ni

Õ �
n

r
Ei

r
Ni

Õ �
n

r
Ei

r
Ni

�
n
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Ei B Õ 1
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�
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Ni

Õ A �
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NiB2

(12)

Therefore equations (12) into (11) gives

CDOP 5 A �
n

r2
Ni

1 �
n

r2
Ei

�
n

r2
Ei

�
n

r2
Ni

Õ A �
n

r
Ei

r
NiB2B1/2

(13)

From equation (3), the numerator is simply n, so the whole formula can be
reduced to:

CDOP 5 n Õ 1/2 (r2
Ei

r2
Ni

Õ r
Ei

r
Ni

2 )Õ 1/2 (14)

where the overbars denote averaging over the section of road (for which the error
is assumed to be approximately constant) . CDOP therefore depends on road geo-
metry, and will be inversely proportional to the number of GPS measurements n
taken over a � xed time interval. With enough measurements and with su� cient
change in road direction, it is possible to reduce CDOP to <1.
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Note that GPS data recording should be su� cient to sample any detail in road
shape that is present in the digital map. It is therefore preferable to record GPS data
at a high rate, e.g. 1 per second. Going at higher rates than this will not help
particularly because of time-correlated errors in multipathing, and because at this
rate the road is approximately straight between points. Where there is detailed road
shape the rate of sampling will increase naturally owing to necessary reductions in
vehicle velocity.

A related quality measure is ‘Mapping Dilution of Precision’, (MDOP) which
we de� ne as the ratio of position precision using map-matched GPS to that using
perfect DGPS corrections. In this case, we assume that if n is much greater than 1,
then the map-matched correction (i.e. the error vector) is uncorrelated with the error
in any single data point. Therefore, the corrected position will have a variance equal
to the variance in the perfect case plus the variance in the correction. As this is to
be divided by the variance in the perfect case, the result is:

MDOP 5 1 1 CDOP

5 11 Ó Tr(AT A)Õ 1 (15)

This measure is particularly useful because:

it is easily interpreted as a ‘level of degradation’ in precision as a result of not
using a perfect DGPS base station
it can be tested for validity under controlled conditions.

As we shall describe, testing was carried out using an ultra precise GPS method
(e.g. carrier phase positioning) to determine the true level of corrected position errors,
and then compare this with the errors obtained by applying a near-perfect DGPS
correction. The point is that equation (15) can be computed easily in real time (even
ahead of time!) by simply knowing the road shape.

Note that MDOP is always greater than 1 because comparison is made with
perfect DGPS. It is worth keeping in mind that no DGPS system is perfect; hence
MDOP>1 does not necessarily mean that real DGPS will give better results than
map-matched GPS.

4. MDOP for basic road shapes
From equations (3), (14) and (15), we can write MDOP analytically in terms of

the direction cosines of the vector normal to the road.

MDOP 5 1 1 n Õ 1/2 (sin2w cos2w Õ sinwcosw2 )Õ 1/2 (16)

This equation can be rearranged into the following form:

MDOP 5 1 1 2n Õ 1/2 (1 Õ cos2w2 Õ sin2w2 )Õ 1/2 (17)

The � rst thing to note about MDOP is that it takes on the following maximum
(worst case) and minimum (optimum) values:

MDOPmax 5 2 ; w 5 constant

MDOPmin 5 11 2nÕ 1/2 ; cos2w 5 sin2w 5 0 (18)

The maximum condition is satis� ed for a straight road. As we shall see, the
minimum condition is satis� ed for the simple case of a right-angled bend. Keeping
in mind the de� nition of MDOP, we see that GPS error ceases to be a dominant



G. Taylor and G. Blewitt62

error source when MDOP < 2, which the above equation satis� es when using four
GPS measurements around a right-angled bend. As more measurements are intro-
duced, MDOP approaches 1, which implies that positioning is as good as using a
perfect DGPS system.

Equation (17) can be easily computed for any road using a graphical interpreta-
tion of the term we call the ‘path closure ratio’:

S (q) 5 cosq2 1 sinq2 (19)

Consider a path constructed using segments i each of equal length and with
bearing q

i
(� gure 2). The path closure ratio S can be shown to be equal to the square

of the ratio of straight-line distance between the starting and end points D to the
total path length P :

S (q
i
) 5 (D/P )2 (20)

Obviously, S ranges from 0 to 1. We can therefore take our digital map of the
road, and transform it to a path where all of the path segments have double the
bearing of the real road, and where each road segment between GPS points are
mapped into segments of equal length. We can then compute MDOP as follows:

MDOP 5 1 1 2n Õ 1/2 (1 Õ S (2w))Õ 1/2

5 11 2/Ó n(1 Õ (D/P )2 ) (21)

Note that a path of � xed length P is therefore equivalent to a road section
covered in a � xed amount of time (because GPS data are recorded at equal intervals).
So for a � xed amount of time, the path which ends closest to the starting point
produces a smaller value of S, and a smaller (more favourable) value of MDOP.

This graphical method is so powerful, that results can be visualized without any
computation (� gure 3). For example, a sharp right-angled bend in a road will map
onto a path which doubles back on itself, reducing S to zero, and hence producing
the minimum value of MDOP. A road that gently sweeps though 90 ß will map onto
a path that heads back in the opposite direction, but is displaced by some distance,
and therefore will produce good, but not optimum results. A road that moves in a
semi-circle (e.g. around a large roundabout ) will map into a path that is a complete
circle, and hence will produce optimum results.

Table 1 summarizes the results for the computation of the path closure ratio

Figure 2. Path constructed of unit vectors.
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Figure 3. Basic road shapes can be transformed into path shapes with twice the curvature,
which can then be interpreted in terms of favourable geometry (MDOP).

Table 1. Quality measures associated with various road geometries for map matched GPS.

Road shape Path closure Mapping dilution of Resolution
description ratio S (2w) precision, MDOP time T (sec)

Instant bend, 10 ß 0.97 1 1 11.5/ Ó n 133

Instant bend, 20 ß 0.88 1 1 5.8/Ó n 34

Instant bend, 45 ß 0.5 1 1 2.8/Ó n 8

Instant bend, 90 ß 0 1 1 2/Ó n 4

Instant bend, angle a cos2a 1 1 2/sina Ó n 4/sin2a

Smoothest curve, 10 ß 0.99 1 1 19.9/ Ó n 396

Smoothest curve, 20 ß 0.96 1 1 10.0/ Ó n 100

Smoothest curve, 45 ß 8/p2 5 0.81 1 1 4.6/Ó n 22

Smoothest curve, 90 ß 4/p2 5 0.41 1 1 2.6/Ó n 7

Smoothest curve, a sin a/a2 1 1 2/Ó (1 Õ sin2a/a2 )n 4/(1–sin2a/a)

S (2w) for various road shapes, which can then be inserted into equation (21) to � nd
the appropriate MDOP value. Also given is the value of n, which would be required
to bring the MDOP value <2. We call this number the ‘resolution time’ T , since it
tells us how many data intervals are required to bring GPS error to a level below
that expected from random position errors. Under the assumption that we use 1
second GPS data, T is in seconds. Alternatively, the value in the � nal column of
table 1 may be considered to be the minimum number of data points required to
describe each road shape, in order to evaluate MDOP.

5. Testing MDOP
To evaluate the eŒectiveness of MDOP, GPS C/A code observation data were

collected in a vehicle driven on roads in the suburbs of Newcastle-upon-Tyne, UK
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(see � gure 4). Over the same period, dual frequency phase data were collected in the
vehicle and also by a static receiver recording base station data on the roof of the
Department of Geomatics, University of Newcastle. These dual frequency data were
used to compute a high precision (cm accuracy) GPS solution, which was assumed
to be the ‘true’ position of the vehicle at each epoch (second). The details of all
hardware, software, data sets and processing techniques are given in Taylor et al.
(2000). All available satellites visible to both receivers were used in the position
solution computation (no elevation mask), this number varied throughout the route
from none to eight. Three point position solutions were computed:

1. RAW solution—using C/A code data.
2. Map-matched GPS solution—using C/A code data, the RRF, MDOP and

digital map data.
3. RTK solution—using dual frequency phase data from both the vehicle and

the base station to compute a high precision (cm accuracy) GPS solution. The
‘true’ position of the vehicle at each epoch was assumed to be that given by
this solution.

The map-matched GPS positions output from method 2 used Ordnance Survey
(OS) road centre-line data, OS DTM data for height aiding, RRF for correct road
selection and MDOP to correct for along track errors. To display the vehicle
positions correctly on OS large scale mapping all resultant latitude, longitude and
height coordinates from the three solutions were transformed to OSGB36 (Ordnance
Survey of Great Britain 1936) National Grid, with a nominal transformation accuracy
of 20 cm (OS 1999). At each epoch, where all three positions were available, the
diŒerence in position between RAW and RTK and map-matched GPS and RTK
were calculated (Position Error).

Figure 4. Test route, displaying GPS seconds.
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A summary of the results is given in table 2. It is also of interest to note that the
maximum position errors were 177 m for the RAW data and 76 m for the map-
matched GPS data (43 m for 95%). Mean error of position has been reduced from
36 m to 13 m over a total of 1112 vehicle positions. The variation in both cross track
and along track error is also much reduced. It can be seen that the map-matched
GPS described in this paper provides a much-improved accuracy of position, particu-
larly if the worst 5% of position errors are removed. In fact, Mapping Dilution of
Precision can be used to identify (predict) where on the route the error vector will
be least accurately modelled. Inspection of the estimated residuals, equation (9), tells
us when we have a poor error vector. If the residuals are low then we can reject a
road segment with the RRF.

All the really large errors occur when the vehicle is stationary or almost stationary
such as at a road junction, e.g. approximately at GPS seconds 482 000, 482 400 (both
at roundabouts) and at 482 150 (motorway slip road). These positions can be seen
on the map in � gure 4 and the corresponding errors in � gure 5. The only other times
are at the beginning and end of the route for the same reason. If we ignore these
times when the positions are in gross error, it can be seen in � gure 6 that cross-track
errors are almost always small, because the car has been positioned by map-matched
GPS on the correct road. Along-track errors are larger, as expected, because once a
correct road is identi� ed, it takes a number of epochs before the algorithm can
successfully use MDOP to correct the position; see table 1.

A second set of data was collected over the same route, with exactly the same
equipment and operational parameters. These data were processed in the same
manner as described above. The only signi� cant diŒerence being that the data were
collected after S/A had been switched oŒ. A summary of the results, are given in
table 3. Again, it is interesting to note the maximum position errors were 36 m for
the RAW data and 21 m for the map-matched GPS data (7 m for 95%).

Table 2. Statistics summary of data collected when S/A was switched on.

Map-matched DGPS RAW

Cross-track Along-track Position Position error Position
error (m) error (m) error (m) [95%] (m) error (m)

Mean Õ 1.0 Õ 2.1 12.7 9.3 35.727
Standard Deviation 8.733 17.548 18.9 11.3 42.842

Figure 5. Position errors for map-matched GPS.
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Figure 6. Cross-track and along-track errors for map-matched GPS.

Table 3. Statistics summary of data collected when S/A was switched oŒ.

Map-matched DGPS RAW

Cross-track Along-track Position Position error Position
error (m) error (m) error (m) [95%] (m) error (m)

Mean Õ 0.28 0.22 2.40 2.02 4.58
Standard Deviation 1.25 2.27 2.44 1.65 2.46

6. Conclusions
From table 1 we can see that the position error can be resolved to within the

expected random error of perfect DGPS for all except the slightest of change in road
geometry. Problems begin to arise with roads, which curve by only 20 ß within the
period that the error is assumed to be constant (~30 sec for road navigation) ,
although even 10 ß are su� cient provided the bend is eŒectively instantaneous . We
therefore conclude that only if roads are straighter than 10–20 ß during a 30 second
driving period (i.e. 0.4–1 km in typical driving conditions) will map-matched GPS
be signi� cantly worse than DGPS. However, the full precision of DGPS is certainly
not required for � nding the correct road centre-line, so these numbers are in any
case extremely conservative for that purpose. In summary, we expect on � rm theoret-
ical grounds that combined RRF and map-matched GPS to be as good as DGPS
for correct road centre-line identi� cation in almost any possible circumstance. This
has the distinct advantage of being a completely self-contained system, requiring no
radio communication for diŒerential corrections and continuous data provision.
Furthermore, because the computation of the estimated GPS receiver position is
part of the RRF and a digital terrain model derived height aiding is used in the
solution, only three satellites are necessary for a solution.

Envisaged further work will include extensive � eld-testing of the combined map
matched GPS and RRF approach to vehicle tracking. The development of the RRF
algorithm, to include network connectivity checking and to use map intelligence,
such as drive restriction information. Moreover, an investigation of other techniques
to reduce the number of satellites required for a solution will be made. Bullock et al.
(1996), examined two satellite tracking for urban canyons and map matching where
only a two-dimensional position is required.
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